Version Control Tutorial
Release 1.0

Simon Mutch

February 17, 2013

Introduction

1.1~ Whatis version control?
1.2 Why you should use it (for everything)

13 Git ... o
First steps

2.1 Creating arepository
2.2 Addingfiles,
2.3 Committing changes
24 Staging modifiedfiles
2.5 Dealing with mistakes
2.6 Deleting and moving files
2.7 Thecircleoflife
2.8 Command summary

Viewing and comparing commits

3.1 The commithistory.
3.2 Comparing commits
3.3 Playing the blame game
34 Command summary
Branches

4.1 Whatisabranch?
42 Creatingbranches
4.3 Command summary

Merging and conflicts

5.1 Merging
5.2 Dealing withconflicts
5.3 Command summary

Online hosting and collaboration

6.1 Onlinehosting
6.2 Cloning arepository
6.3 Collaboration strategies

Other resources

7.1 Tutorials,
72 GUlclients
7.3 Miscelaneous L.

CONTENTS

11

.......................... 11
.......................... 12
.......................... 13
.......................... 13

15

.......................... 15
.......................... 15
.......................... 16

17

.......................... 17
.......................... 17
.......................... 19

21

.......................... 21
.......................... 21
.......................... 21

23

.......................... 23
.......................... 23
.......................... 23

Version Control Tutorial, Release 1.0

NOT 50 LONG AGO.
IN A GALAXY CLOSE BY.

HEY GEORGE

o0 GATTLE 77
TTLE' THING
AGAIN- .

1. e 1
WHAT'S 0p?) sl VERSION CON-WHAT?
Ol WELL..
1| ACCIDENTILY
DELETED ANOTHER Yo LD I ALL
=ty 3 NDER VERSION
CONTROL RIGHT? UGH.

HANUDSCRIPT .

BRESf e

Figure 1: Created using the awesome Comix /O ... and yes, this comic is under version control. :)

These are the course notes for the Version Control session of the 2013 ASA/ANITA Astroinformatics Summer
School.

This session introduces the concept of version control and its particular importance for researchers. We will also
try out some practical examples using the Git version control system and touch on the following topics:

* basic usage (creating a repository, adding files, committing changes)
* branches
¢ merging and conflicts
* online hosting and collaboration
A pdf version of this tutorial can be found here.

This tutorial is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

CONTENTS 1

http://cmx.io/
https://gist.github.com/smutch/4951871
http://www.smp.uq.edu.au/anitaworkshop2013/?page_id=30
http://www.smp.uq.edu.au/anitaworkshop2013/?page_id=30
http://git-scm.com/
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Version Control Tutorial, Release 1.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 What is version control?

Version control, a.k.a. revision control / source code management, is basically a system for recording and manag-
ing changes made to files and folders. It is commonly used to manage source code, however, it is also well suited
to tracking changes to any kind of file which contains mostly text. It can also be used by a lone developer or as a
means for many people to share and collaborate on projects efficiently and safely.

Chances are, you already employ your own version control system, even if you don’t realise it... Many modern
editors such as Microsoft Word and Apple Pages have this facility built in. Also Dropbox maintains a full history
of all of the files you have deletes and edited during the last month.

You have almost certainly employed your own simple form of a version control system in the past. Here is an
example:

This image shows the files and folders making up a paper fictitious paper submission. There are a number of saved
copies of the final article.tex which have created incrementally as the paper has been written, redrafted and
submitted. These are called revisions. By looking at any of these revisions we are able to see the state of the paper
as it was when the revision file was saved. By comparing revision files we can also get a rough idea of how the
paper developed and changed as it was written. Of course, the more saved revisions we have, the easier it is to
piece together how things changed over time.

Version Control Tutorial, Release 1.0

1.2 Why you should use it (for everything)

“In practice, everything that has been created manually should be put in version control, including
programs, original field observations, and the source files for papers.*

—Best Practices for Scientific Computing; Wilson et al. 2012 (arXiv:1210.0530)

In important aspect of any scientific endeavour is reproducibility. We should be able to replicate every figure we
have ever published, even if we have significantly developed our codes and tools since.

As astronomers, we spend much of our time writing code, whether it be a simulation code or an observational
reduction pipeline. As such, our codes are often constantly evolving. By putting all of our code under version
control we can:

* tag code versions for later reference (via tags).

* record a unique identifier for the exact code version used to produce a particular plot or result (via commit
identifiers).

* roll back our code to previous states (via checkout).

* identify when/how bugs were introduced (via diff/blame).

* keep multiple versions of the same code in sync with each other (via branches/merging).
« efficiently share and collaborate on our codes with others (via remotes/online hosting).

It’s important to also realise that many of the advantages of version control are not limited to just managing code.
For example, it can also be useful when writing papers. Here we can use version control to:

* bring back that paragraph we accidentally deleted last week.
* try out a different structure and simply disregard it if we don’t like it.
* concurrently work on a paper with a collaborator and then automatically merge all of our changes together.

The upshot is you should use version control for almost everything. The benefits are well worth it...

1.3 Git

In this tutorial we will be using Git.
it
“Git is a free and open source distributed version control system designed to handle everything from
small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It outclasses SCM tools
like Subversion, CVS, Perforce, and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.“

—Git website

The main feature of Git that sets it apart from other alternatives is that its distributed. This means every person
has their own complete copy of the entire repository and can make changes as they like, only committing to, or
checking out from, the ‘central’ repository when they are happy. With more traditional “centralised” systems
such as Subversion, users must have access to the central repository to commit any changes. With Git, you could
happily work away on a plane without an internet connection.

Git is also much faster than many alternatives, such as Subversion, and is written primarily in C and shell script.
Finally - it’s worth noting that Git was originally written by the famous Linus Torvalds (creator of Linux).

There are other worthwhile alternatives which we aren’t going to cover here - in particular Mercurial. Written in
Python, Mercurial is similar to Git in basic design features and usage, however, it arguably has a smaller user base.

4 Chapter 1. Introduction

http://arxiv.org/abs/1210.0530
http://git-scm.com/
http://git-scm.com/
http://mercurial.selenic.com/

CHAPTER
TWO

FIRST STEPS

I’ll assume that you already have git installed on your system. If not then probably the easiest way to achieve this
is to download an installer from here.

Once you have Git installed, the next step is to provide it with your name and email address which will be used
to sign your commits. This provides us with the ability to see who made what changes when collaborating on a
project.

Type the following in a terminal, making the obvious substitutions:

o°

git config --global user.name "G Lucas"
git config --global user.email glucas@jabbaspalace.edu.au

o°

Next you need to tell Git what editor you want to use when Git needs you to type something:

[)

% git config --global core.editor vim

You should replace vim with what ever your favorite editor is (e.g. emacs, nano, subl, etc.).
You can also make things a little easier on the eyes by telling Git to add some color to its messages:

% git config --global color.ui true

Now that your all set up we can start looking at actually using Git for version control. In what follows, we will
use writing and collaborating on a LaTeX paper as an example project...

2.1 Creating a repository

First of all we need to start our paper by creating a repository.

Decide where you would like your paper to be stored and cd to that directory. Once there, create a new directory
for the paper:

o°

mkdir dummy_paper
% cd dummy_paper

Now initialise your empty repository by typing:
% git init

To check everything has been successful type:
% 1ls -a

and you should see the directory . git. This special folder is where Git will store and manage the version control
history of your project.

Warning: Unless you are familiar with Git it is generally best to avoid touching the .git folder or it’s
contents.

http://git-scm.com/downloads

Version Control Tutorial, Release 1.0

2.2 Adding files

Now we have our fresh Git repository. The next step is to start adding files!

Use your editor of choice to start a LaTeX file named paper . tex in your project directory (dummy_paper).
Add the following to your file and save your changes:

\documentclass{article}
\title{A dummy paper}

\begin{document }
\maketitle

\section{Introduction}
A long time ago in a galaxy far, far away...

\end{document}

Now let’s check the status of our repository using the following command:

[)

% git status

You should see something similar to the following:

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

paper.tex
nothing added to commit but untracked files present (use "git add" to track)

This tells us that paper.tex currently falls under the category of “untracked” files. In other words, Git is not
tracking any changes we make to this file.

In order to tell Git to start tracking our new file, use the following command:

% git add paper.tex

2.3 Committing changes

At this point, if you type again:

[)

% git status

you should see something like the following:

On branch master
#

Initial commit

#
#
Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

#

#

new file: paper.tex

This tells us that we have changes to our repository (here the creation of a new file called paper . tex) that need
to be “committed”.

6 Chapter 2. First steps

Version Control Tutorial, Release 1.0

Committing changes to the repository is the key step of version control. This is where we save a snapshot of the
current state of all tracked files. To commit our current changes type:

[)

% git commit

This will bring up your favorite editor to allow you to provide a “commit message”. On the first line of the file
write the following commit message:

Add basic structure of paper.tex

then save and exit.

That’s it! We have now created a repository, added our first file and committed our changes.

Tip: Writing good commit messages will make your life much easier in future when trying to track down
particular changes. The first line should be a short (i.e. less than 80 characters), descriptive message that makes it
clear what the relevant changes being committed are. If more detail is required then leave a blank line and add a
longer more descriptive message there.

Also note that the norm is to use the future tense in a commit message. i.e. if you were to apply the changes in the
commit, the message would say what would happen...

2.4 Staging modified files

Add another section to paper . tex with the following:

\section{A New Hope}
That’s no moon, that’s a battle station.

If you now run git status, you should see the following:

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout —— <file>..." to discard changes in working directory)
#

modified: paper.tex

#

no changes added to commit (use "git add" and/or "git commit -a")

What Git now tells us is that paper.tex falls under the category of “Changes not staged for commit”. This
means the file has changed since the last commit, however, we haven’t told Git that we want to include these new
changes in our next commit. To do that, we must “stage” the file using git add again:

)

% git add paper.tex

A final check with git status should show that paper . tex now falls under the category of “Changes to be
committed”.

Exercise 1a

Add another file to your git repository called appendix.tex. You can put whatever you want in here (or
just leave it empty), but don’t forget to add it to your repository.
Go ahead and commit your staged changes to both paper.tex and appendix.tex.

2.4. Staging modified files 7

Version Control Tutorial, Release 1.0

2.5 Dealing with mistakes

Perhaps you make a typo in your commit message, or maybe you forget to stage an important change before
committing. In this case you can easily amend your last commit using the git commit --amend command.

Let’s imagine that we forgot to add the file bibliography.tex to our repository when we made our last
commit. To fix this, first create the file and then stage it into the index. Finally, run git commit --amend:

oP

touch bibliography.tex
git add bibliography.tex
git commit --amend

o°

o°

You will then be given the opportunity to change the last commit message if you want to.

2.6 Deleting and moving files

To delete a file in your repository use the git rm command. This will both delete the file from the file system
and stage this deletion action for your next commit.

Alternatively, you can tell Git to remove a file from the repository (stop tracking the file) without actually deleting
it from the file system. This is achieved by passing the ——cached flag to the rm command (i.e. git rm
——cached <filename>).

Exercise 1b

Remove the bibliography.tex file you added in Exercise Ia using the git rm <file>command. Remem-
ber to commit afterwards!

To move or rename a file, use the git mv command. This will again both move the file and stage this change to
the repository.

2.7 The circle of life

At this point we have covered the basic “life cycle” of files and changes in Git. Each file can have one of four
different states:

* Untracked: It’s not listed in the last commit

* Unmodified: It hasn’t changed since the last commit

* Modified: It has changed since the last commit

¢ Staged: The changes will be recorded in the next commit made

The method with which we move each file from one state to another is outlined in the following diagram:

2.8 Command summary

Command Description

git init Initialise a new Git repository.

git status Check the current status of a repository.
git add Stage new and modified files.

git commit Commit staged changes.

git commit —--amend | Amend the last commit

git rm Delete a file and stage this change.

git mv Move a file and stage this change.

8 Chapter 2. First steps

Version Control Tutorial, Release 1.0

File Status Lifecycle

 NCONEDN

Figure 2.1: Credit: The Pro Git book.

2.8. Command summary 9

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository

Version Control Tutorial, Release 1.0

10 Chapter 2. First steps

CHAPTER
THREE

VIEWING AND COMPARING COMMITS

3.1 The commit history

The command git log displays the commit history of the current branch. If you try it in your dummy_paper
directory you should see something like the following:

commit 98cdaf38cl2fccbfe92d4f15dc869afcl2792b22
Author: Simon Mutch <smutch@unimelb.edu.au>
Date: Sat Feb 16 15:56:41 2013 +1100

Delete bibliography.tex.

commit cc745dbfdf0421c7d84d72c75d3a52c517665fe”
Author: Simon Mutch <smutch@unimelb.edu.au>
Date: Sat Feb 16 15:54:55 2013 +1100

Add another section, appendix.tex and bibliography.tex.

commit f615b15149a633c47f690bf891e39¢cb80029%a71b
Author: Simon Mutch <smutch@unimelb.edu.au>
Date: Sat Feb 16 15:51:06 2013 +1100

Add basic structure of paper.tex

As you can see git log provides the unique reference (SHA-1 checksum) for each commit, the author name
and email address, as well as the date and commit message. The entries are listed in reverse chronological order
(i.e. the most recent commit first).

There are a whole host of flags and arguments you can pass to git log to change what information is presented
and how it looks. For example, try typing:

% git log —-pretty=format:"$h %s <%an>" --graph

The result should be something like this:

* 98cdaf3 Delete bibliography.tex. <Simon Mutch>
* cc745db Add another section, appendix.tex and bibliography.tex. <Simon Mutch>
* £615b15 Add basic structure of paper.tex <Simon Mutch>

To investigate all the different options for formatting your log output, try looking at the help for the 1 og command:

[)

% git help log

Tip: git help <command> can be used to get the documentation for almost every Git command. If you type
git help onit’s own, you will also be presented with a list of all major commands for reference.

Its useful to be able to have this concise view of the log without having to type the long command every time. We
can achieve this by adding the command as an alias. Try this command:

11

Version Control Tutorial, Release 1.0

[)

% git config --global alias.lg ’'log ——pretty=format:"%h %$s <%an>" —--graph’

Now you can get the concise log view by simply typing:

% git 1lg

3.2 Comparing commits

Often we want to compare (or “difference”) commits to see how things have changed. To do this we use the git
diff command. For example, to see how our paper has changed between the most recent commit and our first
commit I would type:

% git diff efb5cala

Your commit reference will be different to mine however, and so you must substitute the appropriate reference in
place of ef5cala. Remember, you can get this reference using the git 1g command as outlined above.

Once yourun git diff successfully, you will see something like this:

diff --git c/appendix.tex w/appendix.tex
new file mode 100644
index 0000000..e69de29
diff --git c/paper.tex w/paper.tex
index 3290236..599a0b6 100644
-—— c/paper.tex
+++ w/paper.tex
@@ -8,5 +8,8 Q@

\section{Introduction}

A long time ago in a galaxy far, far away...

+\section{A New Hope}
+That’s no moon, that’s a battle station.
+

\end{document }

The + signs show text which has been added since our first commit, and any — signs would indicate text which
has been removed. At the top of the diff, we can also see that we have added the appendix. tex file.

By specifying only one commit reference when calling git diff we actually implicitly ran:

% git diff ef5cala..HEAD

HEAD is a shortcut for the commit reference pointing to the most recent relevant commit. To access the second

most recent commit we can use the shortcut “"HEAD. These shortcuts are handy to remember when comparing
commits.

git diff can also be used to see how the current state of files have changed since the last commit. To do this
simply run the command with no arguments.

Exercise 2a
Add a sentence to the section “A New Hope” of paper . tex but don’t commit the change. Now try running:

[

% git diff

and make sure you understand the results.

Another useful way to view the commit history of your repository is to use the gitk GUI program which is
packaged with Git. This program displays both the commit history and relevant diffs all together.

12 Chapter 3. Viewing and comparing commits

Version Control Tutorial, Release 1.0

800 gitk: dummy_paper
@ Local uncommitted changes, not checked in to ind:
Delete bibliography.tex. Simon Mutch <smutch@ur 2013-02-16 15:56:41
@ Add another section, appendix.tex and bibliograpt Simon Mutch <smutch@ur 2013-02-16 15:54:55
@ Add basic structure of paper.tex Simon Mutch <smutch@ur 2013-02-16 15:51:06
SHAL ID: <« Row 1/ 4
Find | next prev | commit [containing: %
| Search |
(®)Diff ()Old version (_)New version Lines of context: |3 |3 [|Ignore space change |Line diff
Author:
Committer:
Parent: 98cdaf38c12fcchfe92d4£15dc869afc12792b22 (Delete bibliography.tex.)
Branch:
Follows
Precedes:

Local uncommitted changes, not checked in to index

paper. tex
index 50008b6. . £0622d3 100644

88 -9,7 49,7 €8

A long time ago in a galaxy far, far away...
\section{A New Hope}

That's no moon, that's a battle station

+That's no moon, that's a battle station. May the force be with you

“end{decument}

Exact v | All fields

(@) Patch () Tree
Comments
papertex

3.3 Playing the blame game

Another useful way to visualise the history to is to look at a single file and see in which commit each line was last
changed. Imagine that we identified a bug in a line of code. We could then use this technique to see how long ago

that bug was introduced (and by who!). Try this:

% git blame paper.tex --date=relative

and you should see a copy of paper . tex with the reference, author and time of the last commit where each line

was modified.

3.4 Command summary

Command Description

git log View the commit history for the current branch.
git diff <commit> <commit> | Compare (difference) two commits.

gitk View the commit history in a GUIL

git blame <file> See when each line of a file was last changed.

3.3. Playing the blame game

13

Version Control Tutorial, Release 1.0

14 Chapter 3. Viewing and comparing commits

CHAPTER
FOUR

BRANCHES

4.1 What is a branch?

Branches allow you to diverge from your current development and try something new without altering the history
of your main work. For example, you could implement a new code feature whilst leaving the fully functional
(hopefully working and tested) code intact for others to checkout.

In Git, branching is generally quick, flexible and simple. It is a fantastic way to test out ideas, try new things and
safely develop your repository. This is especially true when collaborating with other people...

4.2 Creating branches

All new repositories, by default, start on a branch called master (you should see this name if you again run git
status).

Let’s now create a new branch called risky_idea by typing the following command inside of our
dummy_paper directory:

[)

% git branch risky_idea

Well that was simple! However, if a quick check of git status shows that we are still on the master branch.
In order to start working with our new branch we need to perform a checkout; This moves our current “HEAD”
(remember this is what Git calls the pointer to the most recent relevant commit) to the branch risky_idea:

[)

% git checkout risky_idea

Running git status now should show that you are on the risky_idea branch.

Now run:

% git 1lg

and you should see that our earlier commits from the master branch are still there. When running git branch,
the newly created branch inherits the history of the original branch we diverged from (in this case the master
branch). However, any subsequent commits to the new branch will not exist in the original.

15

Version Control Tutorial, Release 1.0

Exercise 3a
Add another section to paper . tex with the following:

\section{The Empire Strikes Back}
Laugh it up fuzz-ball!...

Then stage and commit your changes. Finally, compare the risky_idea branch with the tip of the
master branch using git diff:

% git diff master

4.3 Command summary

Command Description
git branch Create a new branch.
git checkout | Checkout a branch/commit.

16 Chapter 4. Branches

CHAPTER
FIVE

MERGING AND CONFLICTS

At this stage we have two branches, master and risky_idea. Let’s imagine that we have continued to work
away on the risky_idea branch, committing our changes as we go...

5.1 Merging

At some stage we will want fold our changes in the risky_idea branch back into the master branch. We do
this by “merging” the risky_idea branch into master.

First we checkout the master branch:

)

% git checkout master

If yourun git 1g you should see that none of your commits to the risky_idea branch are present. You can
further confirm this by looking at the contents of paper . tex; The section “The Empire Strikes Back” shouldn’t
be present.

Now merge risky_idea into our current branch using the following command:

[)

% git merge risky_idea

If everything runs smoothly, running git 1g should show your commits from the risky_idea branch.

At this stage you could either checkout the risky_idea branch again and continue working, or if your finished
with it you can delete it.

We no longer need the risky_idea branch, so delete it using:

[)

% git branch -d risky_idea

5.2 Dealing with conflicts

Typically, as above, a git merge will progress smoothly with Git automatically working out how to merge the
two branches. Occasionally however, this is not the case. In particular if we have made changes to two different
branches which directly conflict with each other, then a merge will require us to tell Git which change is the correct
one. We will now engineer such a situation...

First create a new branch called episode5 and check it out:

% git branch episodeb
% git checkout episodeb5

Tip: In situations where you want to create a new branch and immediately check it out (as above) you can use
the following shortcut:

17

Version Control Tutorial, Release 1.0

% git checkout -b <branch_name>

Then add another section to paper . tex with the following:

\section{Revenge of the Jedi}
That blast came from the Death Star! That thing’s operational!

Commit your changes:

git add paper.tex
git commit

a° o°

Now we have a new branch with a new commit that adds a section to our paper. However, imagine the situation
where we decide we want to leave this section for the moment and go back to working on our second section. To
do this, we return to our master branch. During the course of our edits we come up with another name for our
newest section though, and pen this in so that we don’t forget. This will lead to a conflict when we later merge our
episodeb5 branch back into master. Let’s replicate this conflict now to see what happens...

First checkout master:

)

% git checkout master

Then edit paper . tex, this time with the text:

\section{Return of the Jedi}
That blast came from the Death Star! That thing’s operational!

Again, stage and commit your changes:

[)

% git commit -a

Note: Note that we used git commit -a here to stage and commit our changes in one go. This is a very
useful shortcut. However, it will only stage changes in files which are already being tracked by the repository. i.e.
if you add a new file to your project, you will still need to run git add for Git to start tracking it. Additionally,
it will stage all changes, so you have less control over what changes go into each commit.

Now our two branches master and episode5 have commits in them which directly conflict. Running the
merge command from the master branch will flag this conflict and Git will ask us for help. Try it now:

[)

% git merge episodeb

and you should be presented with the following message:

Auto-merging paper.tex
CONFLICT (content): Merge conflict in paper.tex
Automatic merge failed; fix conflicts and then commit the result.

This tells us that a conflict has occurred in paper.tex.

To resolve the conflict open up paper.tex in your favorite editor. The offending section will look something
like this:

<<<<<<< HEAD
\section{Return of the Jedi}

\section{Revenge of the Jedi}
>>>>>>> episodeb

Everything between the lines <<<<<<< HEAD and == == are what exists in the HEAD commit (the tip of
the master branch in this case). Between the lines ======= and >>>>>>> episodeb’ is what exists in our
episodeb5 branch.

18 Chapter 5. Merging and conflicts

Version Control Tutorial, Release 1.0

In order to resolve the conflict, pick which of the section headings we want to use and remove the other lines
(including the ======= line and those lines starting with > or < symbols. In our case we want to keep the section
title from the master branch, and so we need to leave only that line:

\section{Return of the Jedi}

After you have edited and saved paper . tex, finish the merge by staging and committing your results:

[)

% git commit -a

The commit message will be auto-populated for you, and so there is no need to edit it.

5.3 Command summary

Command Description

git merge Merge branches and commits.

git branch -d | Delete a branch.

git commit -a | Stage all changes in tracked files and commit them.

5.3. Command summary 19

Version Control Tutorial, Release 1.0

20 Chapter 5. Merging and conflicts

CHAPTER
SIX

ONLINE HOSTING AND
COLLABORATION

As well as managing our own codes and documents, another important use of version control is for collaboration...

6.1 Online hosting

As already discussed, Git uses a “distributed” model that allows everyone working on a project to have their own
independent copy of the entire repository. To collaborate effectively though we need a central version of the code
base which is used to unify everyones’ efforts. Typically the best place for such a central repository is online.

There are a number of excellent options for online hosting of git repositories (for a list see this Wikipedia entry).
However, there are two options in particular which stand out in my opinion:

* Bitbucket: This site overs unlimited free public repositories (where anyone can see and checkout your
project). If you have an email address from an academic institution though, then you can also get unlimited
free private repositories! These repositories only allow users who you specify to have access.

 Github: This is site also offers unlimited free public repositories. With an academic institution email address
you can also get 5 free private repositories. Github is probably the place for new open source software and
tools. It’s a fantastic service and well worth using, especially if you want to take your own code open source.
You can also use Github to serve web pages for free. This tutorial is open sourced on Github.

6.2 Cloning a repository

If you have the address (and correct permissions) for an online repository then you can grab your own copy using
the clone command. Try cloning your own copy of the source for this tutorial (make sure you are not in your
a_paper repository when you do this):

% git clone git://github.com/smutch/VersionControlTutorial.git
% cd VersionControlTutorial

You are now inside your own personal copy of the repository and can do whatever you want with it. Try:

)

% git 1lg

and you will see that you also have the full commit history.

6.3 Collaboration strategies

Unfortunately, it is out-with the scope of this tutorial to cover all of the different ways you can collaborate with Git.
There are a number of options for how to get your changes incorporated into the central repository for everyone
to have access to. These include, forking and pull requests, email patches, and direct pushing.

21

http://en.wikipedia.org/wiki/Git_(software)#Source_code_hosting
https://bitbucket.org/
http://blog.bitbucket.org/2012/08/20/bitbucket-academic/
http://blog.bitbucket.org/2012/08/20/bitbucket-academic/
https://github.com/

Version Control Tutorial, Release 1.0

The basic work-flow is almost always the same though:
* Make your changes in your own personal copy of the repository, ideally in a new branch.

e “Pull” (using the command git pull)the mostrecent version of the central repository into your master
branch. This makes sure you are up-to-date with any changes which were made by someone else subsequent
to when you last pulled (or made your original clone).

* Merge your changes from your new branch into master.

* Once any conflicts are resolved you can update the central repository with your new code (using for example
git push).

Further reading

For a proper introduction to hosting and collaborating with Git, see the excellent online book, Pro Git. The
help pages of Github are also an excellent resource.

22 Chapter 6. Online hosting and collaboration

http://git-scm.com/book
https://github.com/

CHAPTER
SEVEN

OTHER RESOURCES

7.1 Tutorials

Other great tutorials and resources for learning Git include:
* The Git Pro book (http://git-scm.com/book)
* The Github help pages (https://help.github.com/)
* John McDonnell’s Git for Scientists tutorial (http://nyuccl.org/pages/GitTutorial/)

7.2 GUI clients

See the list on the Git homepage for a good run down on the different options here.

7.3 Miscelaneous

If your feeling adventurous, try learning Git with Githug.
If your looking for an excellent command line Git client try Tig.

If you use Vim then I can’t recommend enough the Fugitive plugin.

23

http://git-scm.com/book
https://help.github.com/
http://nyuccl.org/pages/GitTutorial/
http://git-scm.com/downloads/guis
https://github.com/Gazler/githug
http://jonas.nitro.dk/tig/
https://github.com/tpope/vim-fugitive

	Introduction
	What is version control?
	Why you should use it (for everything)
	Git

	First steps
	Creating a repository
	Adding files
	Committing changes
	Staging modified files
	Dealing with mistakes
	Deleting and moving files
	The circle of life
	Command summary

	Viewing and comparing commits
	The commit history
	Comparing commits
	Playing the blame game
	Command summary

	Branches
	What is a branch?
	Creating branches
	Command summary

	Merging and conflicts
	Merging
	Dealing with conflicts
	Command summary

	Online hosting and collaboration
	Online hosting
	Cloning a repository
	Collaboration strategies

	Other resources
	Tutorials
	GUI clients
	Miscelaneous

